Pleiotropic Effects of sym-17 : A Mutation in Pisum sativum L. cv Sparkle Causes Decreased Nodulation, Altered Root and Shoot Growth, and Increased Ethylene Production.

نویسندگان

  • K H Lee
  • T A Larue
چکیده

R82 (sym-17), a stable mutant of Pisum sativum L. cv Sparkle, is described. The shoot growth of the mutant was less than that of its parent under light or dark growth conditions. Gibberellic acid treatment did not normalize the shoot growth of R82. The mutant had thick and short roots. It formed few nodules, but the specific nitrogenase activity was not affected. R82 produced and contained more ethylene than Sparkle. It also contained more free 1-amino-cyclopropane-1-carboxylic acid than did its parent in both the shoot and the root. The root tip of R82 had a lower activity of ethylene-forming enzyme than that of Sparkle, whereas the whole shoot of R82 had a similar activity. The sensitivity of R82 to exogenous ethylene was not more than that of Sparkle. Exogenous ethylene treatments did not make Sparkle mimic R82, and inhibitors of ethylene biosynthesis or action did not normalize the phenotype of R82. The data suggest that the primary effect of sym-17 is not the enhanced ethylene production.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ethylene Inhibitors Restore Nodulation to sym 5 Mutants of Pisum sativum L. cv Sparkle.

The sym 5 mutants of pea, Pisum sativum L. cv Sparkle, do not differ in growth habit from their normal parent and nodulate poorly at a root temperature of 20 degrees C. If inhibitors of ethylene formation or action (Co(2+), aminoethoxyvinylglycine, or Ag(+)) are added to the substrate, nodulation of the sym 5 mutants is increased. Similar treatments of four other mutant sym lines do not restore...

متن کامل

Rhizobium leguminosarum biovar viciae 1-aminocyclopropane-1-carboxylate deaminase promotes nodulation of pea plants.

Ethylene inhibits nodulation in various legumes. In order to investigate strategies employed by Rhizobium to regulate nodulation, the 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene was isolated and characterized from one of the ACC deaminase-producing rhizobia, Rhizobium leguminosarum bv. viciae 128C53K. ACC deaminase degrades ACC, the immediate precursor of ethylene in higher plants. T...

متن کامل

Light Microscopy Study of Nodule Initiation in Pisum sativum L. cv Sparkle and in Its Low-Nodulating Mutant E2 (sym 5).

We compared nodule initiation in lateral roots of Pisum sativum (L.) cv Sparkle and in a low-nodulating mutant E2 (sym 5). In Sparkle, about 25% of the infections terminated in the epidermis, a similar number stopped in the cortex, and 50% resulted in the formation of a nodule meristem or an emerged nodule. The mutant E2 (sym 5) was infected as often as was the parent, and it formed a normal in...

متن کامل

Physiological Characterization of a Single-Gene Mutant of Pisum sativum Exhibiting Excess Iron Accumulation: I. Root Iron Reduction and Iron Uptake.

Root systems of mutant (E107) and parental (cv ;Sparkle') Pisum sativum genotypes were studied to determine the basis for excess Fe accumulation in E107. Plants were grown with (+Fe-treated) or without (-Fe-treated) added Fe(III)-N,N'-ethylenebis[2-(2-hydroxyphenyl)glycine] in aerated nutrient solutions. Daily measurements of Fe(III) reduction indicated a four-to seven-fold higher reduction rat...

متن کامل

Effects of Combined Inoculation of Pea Plants with Arbuscular Mycorrhizal Fungi and Rhizobium on Nodule Formation and Nitrogen Fixing Activity

The response of pea (Pisum sativum cv. Avola) to arbuscular micorrizal fungi (AM) species Glomus mosseae and Glomus intraradices and Rhizobium leguminosarum bv. Viciae, strain D293 regarding growth, nodulation and nitrogen fixing activity was studied. Pea plants (Pisum sativum cv. Avola) were grown in a glasshouse until flowering stage (35 days) in 4 kg plastic pots using leached cinnamonic for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 100 3  شماره 

صفحات  -

تاریخ انتشار 1992